Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neuroscience Bulletin ; (6): 453-465, 2023.
Article in English | WPRIM | ID: wpr-971570

ABSTRACT

Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.


Subject(s)
Amino Acids , Myelin Sheath/metabolism , Schwann Cells/metabolism , Oligodendroglia/metabolism , Signal Transduction , Intercellular Signaling Peptides and Proteins/metabolism
2.
Neuroscience Bulletin ; (6): 720-740, 2022.
Article in English | WPRIM | ID: wpr-939842

ABSTRACT

Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.


Subject(s)
Animals , Rats , Axons , Chromatin/metabolism , Gene Expression Profiling , Myelin Sheath/metabolism , Nerve Regeneration/physiology , Schwann Cells/metabolism , Sciatic Nerve/injuries
3.
Neuroscience Bulletin ; (6): 1314-1324, 2021.
Article in English | WPRIM | ID: wpr-922627

ABSTRACT

The exacerbation of progressive multiple sclerosis (MS) is closely associated with obstruction of the differentiation of oligodendrocyte progenitor cells (OPCs). To discover novel therapeutic compounds for enhancing remyelination by endogenous OPCs, we screened for myelin basic protein expression using cultured rat OPCs and a library of small-molecule compounds. One of the most effective drugs was pinocembrin, which remarkably promoted OPC differentiation and maturation without affecting cell proliferation and survival. Based on these in vitro effects, we further assessed the therapeutic effects of pinocembrin in animal models of demyelinating diseases. We demonstrated that pinocembrin significantly ameliorated the progression of experimental autoimmune encephalomyelitis (EAE) and enhanced the repair of demyelination in lysolectin-induced lesions. Further studies indicated that pinocembrin increased the phosphorylation level of mammalian target of rapamycin (mTOR). Taken together, our results demonstrated that pinocembrin promotes OPC differentiation and remyelination through the phosphorylated mTOR pathway, and suggest a novel therapeutic prospect for this natural flavonoid product in treating demyelinating diseases.


Subject(s)
Animals , Mice , Rats , Cell Differentiation , Flavanones , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Remyelination , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
4.
Rio de Janeiro; s.n; 2013. 87 p. ilus.
Thesis in Portuguese | LILACS | ID: lil-711933

ABSTRACT

Lesões sistêmicas peri e pré-natais alteram o desenvolvimento do SNC, levando a problemas cognitivos e motores em crianças que podem perdurar por toda a vida. Um tipo particular de lesão é a hipóxia-isquemia (HI), caracterizada pela interrupção momentânea ou permanente do fluxo sanguíneo. Um dos mecanismos propostos para as lesões decorrentes da HI é a excitotoxicidade glutamatérgica. O uso de inibidores da neurotransmissão glutamatérgica tem sido estudados em diversos modelos de HI. Neste trabalho, avaliamos os efeitos morfofuncionais da administração de um antagonista não-competitivo do receptor de glutamato NMDA sobre o desenvolvimento do cerebelo. Ratas no 18º dia de gestação foram anestesiadas, os cornos uterinos expostos e as 4 artérias uterinas obstruídas por 45 minutos (Grupo H). Animais controle tiveram os úteros expostos, sem a obstrução (Grupo S). Após a cirurgia a gestação prosseguiu. Somente animais nascidos a termo foram utilizados. Um dia após o nascimento, metade de cada ninhada foi designada para receber MK801, 0,3mg/kg/dia, (grupos SM e HM) e a outra metade recebeu solução salina (grupos SS e HS), por 5 dias. Após anestesia e perfusão-fixação com paraformaldeído 4% aos 9, 23, 30 e 60 dias pós-natais, cortes parassagitais do cerebelo foram obtidos em criótomo e submetidos à imunohistoquímica para calbindina, GFAP, GLAST, PDGFRα e MBP. A partir de 45 dias de vida, os animais foram testados em vários de testes comportamentais: labirinto em cruz elevado (LCE), campo vazado (CV), ROTAROD, teste de caminhada sobre barras (ladder test) e teste do comprimento da passada (stride length). Aos 9 dias, a espessura da árvore dendrítica era menor nos animais SM, HS/HM, demonstrando efeitos deletérios tanto do MK801 quanto da HI. Menor número de células PDGFRα+ foi observado nos animais HS/HM, sem efeitos da administração de MK801. Aos 23 dias, maior número de células PDGFRα+ foi observado nos animais HM comparado aos outros 3 grupos, indicando efeito ...


Peri and prenatal systemic lesions alter CNS development leading to motor and cognitive problems in children that might persist throughout life. A particular kind of injury, the hypoxic ischemic (HI), is characterized by a permanent or temporary blockage of blood flow. One of the proposed mechanisms downstream from a HI event is called glutamatergic excitotoxicity. The administration of glutamate inhibitors has been studied in HI models for several years. In this work, we evaluated the effects of administration of a non-competitive antagonist of glutamate receptor, NMDA, on cerebellar development and behavioral tests of HI animals. Pregnant rats in the 18th gestational day were anesthetized, the uterine horns were exposed and the four uterine arteries were clamped for 45 minutes (group H). Sham controls had the uterine horns exposed, but no arteries were clamped (group S). Gestation proceeded after surgery. Only full term animals were used. One day after birth half the animals was assigned to receive either SALINE (groups SS and HS) or MK801 (groups SM and HM). Animals were anesthetized and perfused with 4% paraformaldehyde at 9, 23, 30 and 60 days of age. Parasagittal cerebellar sections were submitted to Calbindin, GFAP, GLAST, PDGFRα and MBP immunohistochemistry. Beginning at P45 animals were subjected to a battery of behavioral tests: elevated plus maze (EPM), hole board (HB), ROTAROD, ladder test and stride length. At P9 the dendritic tree of Purkinje cells were thinner in SM, HS/HM animals, indicating that both HI and MK801 are deleterious regarding this Purkinje cell differentiation. A lower number of PDGFRα+ cells was observed in HS/HM animals, with no effects of MK801 administration. At P23 a greater number of PDGFRα+ cells was found in HM animals when compared to the other 3 groups, demonstrating a neuroprotector effect of MK801. A lower number of myelinated fibers (MBP+) was observed in HS animals at P9, and MK801 administration reverse this ...


Subject(s)
Animals , Male , Female , Rats , Hypoxia-Ischemia, Brain/complications , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Excitatory Amino Acid Antagonists/administration & dosage , Myelin Sheath/metabolism , Purkinje Cells/metabolism , Cerebellum/growth & development , Cerebellum , Dizocilpine Maleate/administration & dosage , Oligodendroglia/metabolism , Amino Acid Transport System X-AG/metabolism
5.
Braz. j. med. biol. res ; 44(6): 553-561, June 2011. ilus
Article in English | LILACS | ID: lil-589973

ABSTRACT

White matter injury characterized by damage to myelin is an important process in hypoxic-ischemic brain damage (HIBD). Because the oligodendrocyte-specific isoform of neurofascin, neurofascin 155 (NF155), and its association with lipid rafts are essential for the establishment and stabilization of the paranodal junction, which is required for tight interaction between myelin and axons, we analyzed the effect of monosialotetrahexosyl ganglioside (GM1) on NF155 expression and its association with lipid rafts after HIBD in Sprague-Dawley rats, weighing 12-15 g, on day 7 post-partum (P7; N = 20 per group). HIBD was induced on P7 and the rats were divided into two groups: one group received an intraperitoneal injection of 50 mg/kg GM1 three times and the other group an injection of saline. There was also a group of 20 sham-operated rats. After sacrifice, the brains of the rats were removed on P30 and studied by immunochemistry, SDS-PAGE, Western blot analysis, and electron microscopy. Staining showed that the saline group had definite rarefaction and fragmentation of brain myelin sheaths, whereas the GM1 group had no obvious structural changes. The GM1 group had 1.9-2.9-fold more GM1 in lipid rafts than the saline group (fraction 3-6; all P < 0.05) and 0.5-2.4-fold higher expression of NF155 in lipid rafts (fraction 3-5; all P < 0.05). Injection of GM1 increased the content of GM1 in lipid rafts as well as NF155 expression and its lipid raft association in HIBD rat brains. GM1 may repair the structure of lipid rafts, promote the association of NF155 (or other important proteins) with lipid rafts, stabilize the structure of paranodes, and eventually prevent myelin sheath damage, suggesting a novel mechanism for its neuroprotective properties.


Subject(s)
Animals , Female , Male , Rats , Cell Adhesion Molecules/metabolism , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/pharmacology , Hypoxia-Ischemia, Brain/metabolism , Membrane Lipids/metabolism , Myelin Sheath/drug effects , Nerve Growth Factors/metabolism , Animals, Newborn , Blotting, Western , Brain/ultrastructure , Hypoxia-Ischemia, Brain/pathology , Injections, Intraperitoneal , Microscopy, Electron , Myelin Sheath/metabolism , Myelin Sheath/pathology , Random Allocation , Rats, Sprague-Dawley
6.
Braz. j. med. biol. res ; 33(12): 1477-82, Dec. 2000. ilus
Article in English | LILACS | ID: lil-274903

ABSTRACT

In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown


Subject(s)
Animals , Rats , Freeze Fracturing/methods , Myelin Sheath/metabolism , Nerve Crush , Sural Nerve/surgery , Wallerian Degeneration/surgery , Microscopy, Electron , Rats, Wistar , Wallerian Degeneration/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL